Modeling the Benefits of Urban Pesticide Application Best Management Practices in Reducing Pesticide Aquatic Ecosystem Exposure

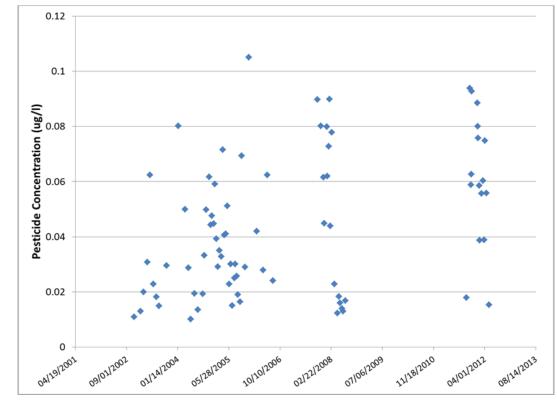
Michael Winchell¹, Scott Jackson², Russell Jones³, Lauren Padilla¹

- 1. Stone Environmental, Inc.
- 2. BASF Corporation
- **3.** Bayer CropScience

ACS National Meeting, San Francisco, CA, August 12th, 2014

Presented by Michael Winchell on Behalf of Pyrethroid Working Group member companies: AMVAC, Bayer, DuPont, FMC, Cheminova, Syngenta, Valent, BASF

Contents


o Background

- Urban Best Management Practice (BMP)
 Effectiveness at the Plot Scale
- Development of a Watershed Scale Modeling Approach
- Modeling Urban BMP Effectiveness at the Watershed Scale

Summary and Conclusions

Background: Motivation for Modeling of Urban Pesticide Concentrations

- Use of pesticides in urban environments has resulted in detections of these pesticides in some urban drainage systems.
- These urban pesticide detections have led to a need for evaluation of urban ecological exposure potential.
- Supported by monitoring datasets, simulation modeling can estimate pesticide concentrations in urban receiving waters.

Arcade Creek, Del Paso Heights, CA

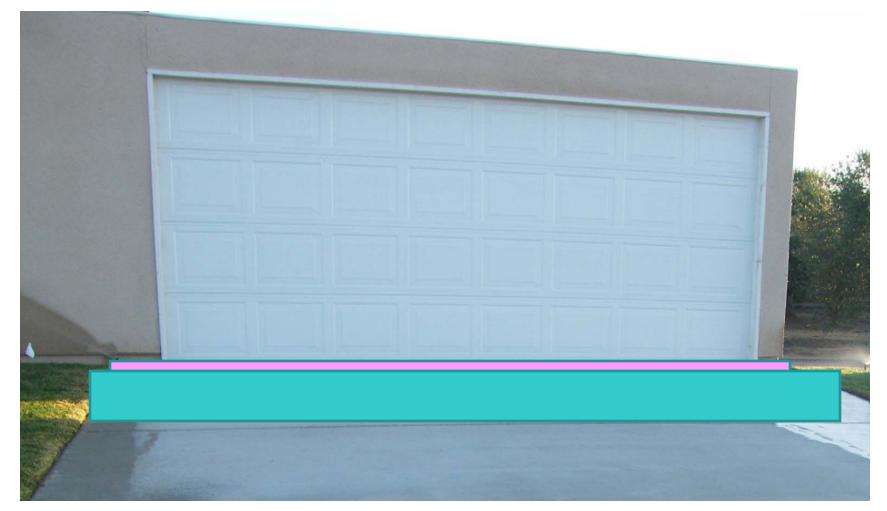
Background: Modeling Approach Requirements

- The urban pesticide modeling approach must:
 - Capture the heterogeneity in use sites found in an urban environment.
 - Account for the hydrologic processes in residential watersheds.
 - Allows the flexibility in use assumptions
 - Permit evaluation of mitigation effectiveness

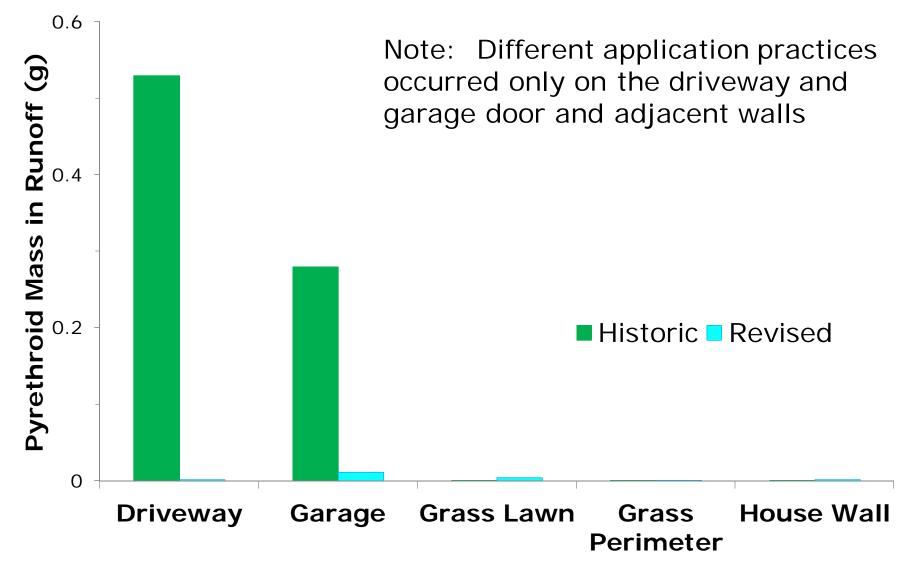
 Model must be validated with monitoring data.

Plot Scale BMP Effectiveness: PWG Pathway ID Study

- Determine the important pathways for off-site movement from residential applications (essential to developing effective mitigation practices).
- Determine the effectiveness of spot (crack and crevice) treatments for reducing residues from applications to driveways and adjacent surfaces (Davidson et al., 2014).



Plot Scale BMP Effectiveness: Applications To Garage Wall


Historic Practices: blue and pink Revised Practices: pink only

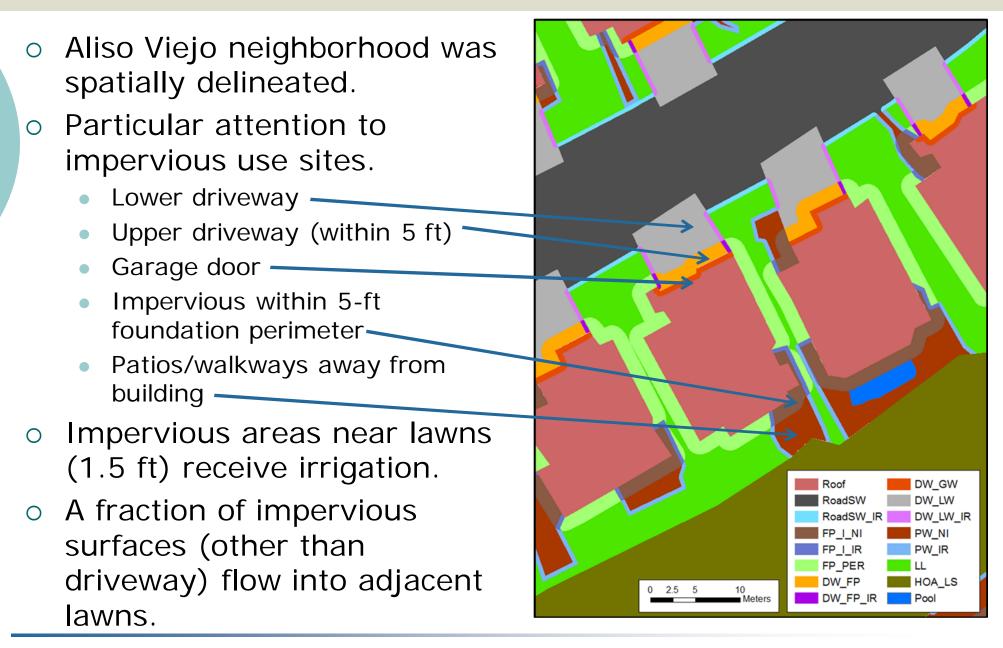
Plot Scale BMP Effectiveness: Applications To Driveway

Historic Practices: blue and pink Revised Practices: pink only

Plot Scale BMP Effectiveness: Reduction in Observed Mass Loss

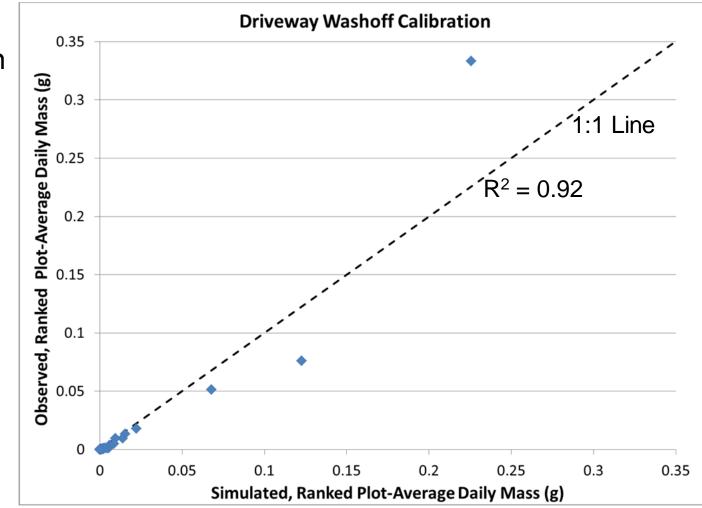
• These data can be used in parameterizing a watershed model.

Modeling Approach: SWMM-AGRO Model Selection


- Storm Water Management Model (SWMM): US EPA
 - Watershed scale, urban/residential water quantity and quality model
 - Strength in handling of sub-hourly runoff and flow routing
 - Able to model multiple surface types (lawn, driveway, etc.)
- AGRO: Canadian Center for Environmental Modeling (CEMC)
 - Water Quality Model: Quantitative Water, Air, Sediment Interaction (QWASI) Fugacity model (Mackay, 2001).
 - Accounts for chemical mass exchange between water column (dissolved and sorbed compartments), benthic layer (dissolved and sorbed compartments), and air.
 - Simulation of sediment dynamics, including handling of incoming sediment; important for high Koc pyrethroids.
 - AGRO-2014 (Padilla and Winchell, 2013) includes improvement in parameterization based on comparison with cosm study data.

Modeling Approach: Study Location

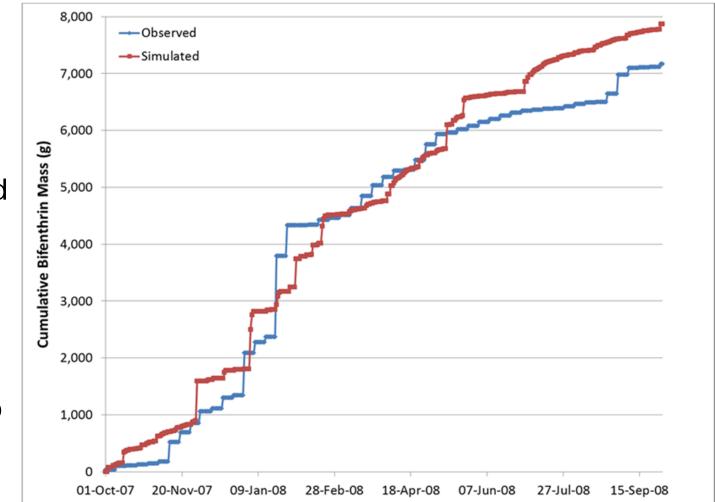
- Aliso Viejo, Orange County, CA
- Part of CA DPR / UC Riverside monitoring program (Oki and Haver, 2011).
- Drainage area: 67.2 acres
- o 307 homes
- Dwelling unit density: 4.6 units/acre.


Modeling Approach: Conceptual Model

Modeling Approach: Pesticide Wash-Off Calibration

- A SWMM model was developed to simulate washoff (historical practices) from the Pathway ID study (driveway and the lawn).
- Calibrations sought to match observed total washoff and daily washoff distribution.

The Pathway ID washoff calibration served as the basis for the neighborhood model scenario.

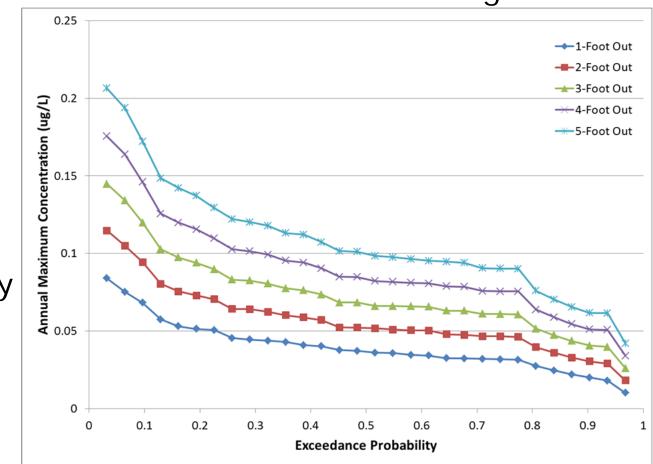

© 2014 by Pyrethroid Working Group. All rights reserved

Modeling Approach: Watershed Scale Pesticide Simulation

• The simulated cumulative bifenthrin mass load over 1 year was compared to the observed mass load.

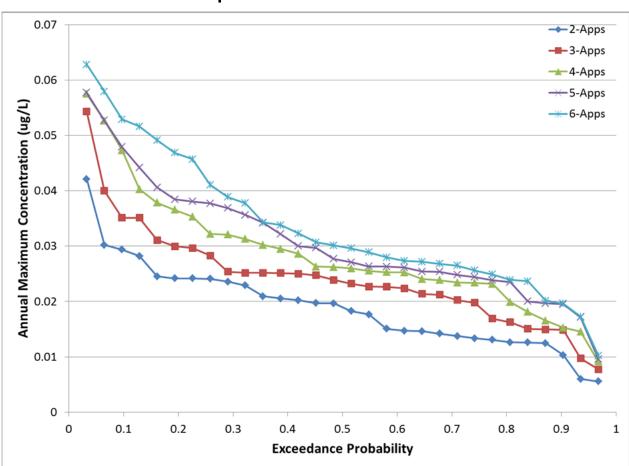
 Over the 1 year period, the model predicted close to the observed load.

 The validated modeling approach could now be used to assess BMPs.

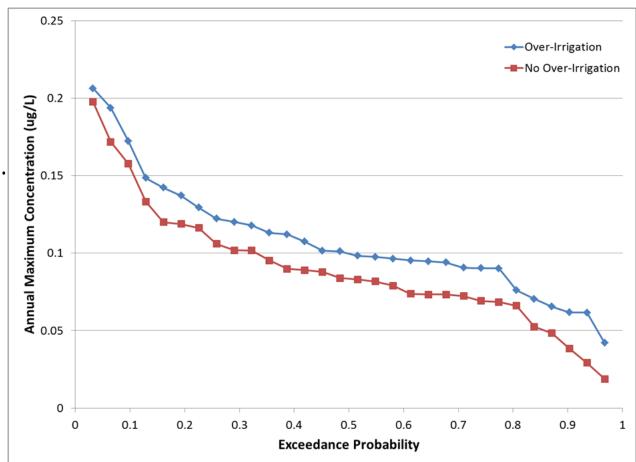

Model Application: Evaluating BMPs and Labeling Alternatives

- Using the validated SWMM-AGRO model residential scenario, the effects on ecological exposure of a range of BMPs and label alternatives can be evaluated:
 - Modifying the treated width in perimeter applications
 - Modifying the number of applications per season
 - Reducing over-irrigation
 - Splitting applications to occur at lower rates at a higher frequency
 - AI-specific mitigations
- These simulations can be efficiently evaluated with the SWMM-AGRO model interface.

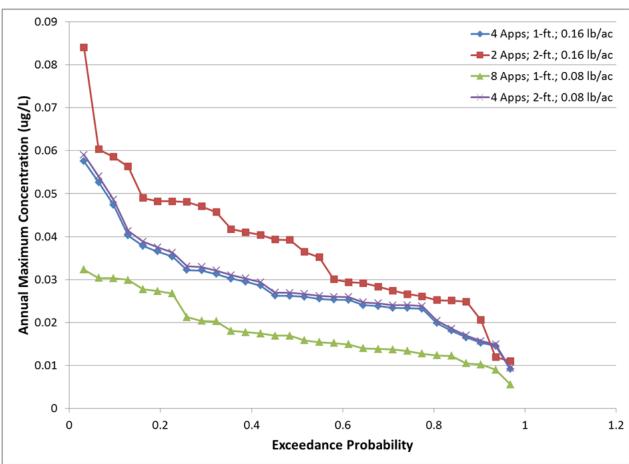
Residential Scenario	Pesticide Applicat	ion inputs			
California Current	Bifenthrin, Default		Edit	Cancel E	dits Save Edit
Mid-Atlantic North Central	Cyfluthrin, Default Cypermethrin, Def Deltamethrin, Def	ault	Delete	Add Ne	ew l
Northeast Northwest —	Esfenvalerate, De Lambda Cyhaloth		Create A	pp. TS File	es
South Central Southeast	Permethrin, Defau	It	Application TS Files Created		on Cronted
and the first of the second second second					
C:\Models\SWMM_AGRO\Sce Application Inputs					
C:\Models\SWMM_AGRO\Sco Application Inputs Use Site	App Rate (kg/ha)	App Ti	me (hr of day)	
Time Series Location C:\Models\SWMM_AGRO\Sce Application Inputs Use Site PW DW CO	App Rate (kg/ha)		me (hr of day)	
C:\Models\SWMM_AGRO\Sco Application Inputs Use Site PW DW FP	App Rate (kg/ha)	App Ti	me (hr of day)	
C:(Models(SWMM_AGRO)Sco Application Inputs Use Site PW DW FP LN FP = Foundation Perimeter	App Rate (kg/ha) 4.8 Apps per Year	App Ti	me (hr of day) Date 3 (MM/		e 4 (MM/DD)
C:\Models\SWMM_AGRO\Sce Application Inputs Use Site PW DW FP LN FP = Foundation Perimeter DW = Driveway	App Rate (kg/ha) [4.8 Apps per Year [4	App Ti 9			
C:\Models\SWMM_AGRO\Sce Application Inputs Use Site PW DW	App Rate (kg/ha) [4.8 Apps per Year [4 Date 1 (MM/DD)	App Ti 9 Date 2 (MM/DD) [04/01	Date 3 (MM/	(DD) Date 10/0	


Model Application: Evaluation of Mitigation by Reducing Treated Width

- The foundation perimeter treatment was varied in 1 ft. increments from a standard 5 ft. out down to 1 ft. out.
- The effects of annual maximum EECs in a receiving water are shown.
- Reductions in max EECs with decreasing width treated are nearly linear.
- Lowering the treated width may be an effective mitigation strategy.


Model Application: Evaluation of Mitigation by Reducing Applications

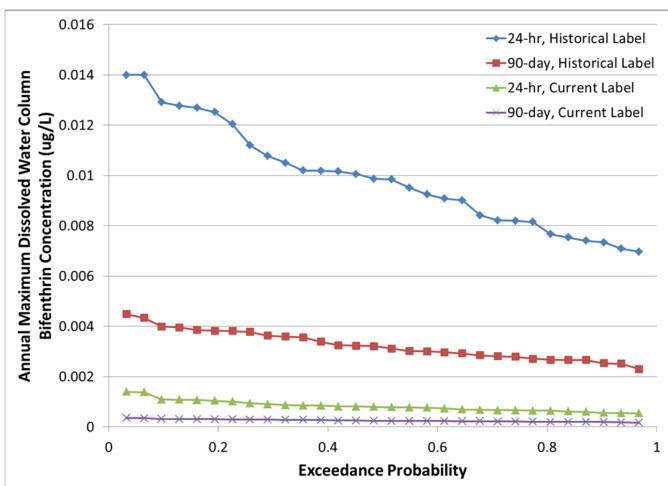
- The number of applications made to all residential use sites was varied between 2 and 6 applications per year.
- The single application rate was kept constant.
- The change in annual max EECs is not linear as a function of apps.
- A reduction in the number of apps from 6 to 2 results in less than a 50% reduction in the 90th percentile EEC.


Model Application: Evaluation of Mitigation by Reducing Over-Irrigation

- The residential modeling scenario developed included overirrigation onto impervious surfaces adjacent to lawns.
- Observed flow and concentration showed this to be common.
- A modification of the scenario to completely remove off-target overirrigation was made.
- A less than 9% reduction in 90th percentile EECs was predicted from this mitigation strategy.

Model Application: Evaluation of Rate, Number of Apps, and Treated Width

- Complex alternatives that vary application rate, number of applications, and treated width can be assessed.
- All 4 alternatives results in the same total pounds applied.
- The lower frequency, higher rate option was found to result in the highest EECs.
- The more frequent lower rate, lower treated area option resulted in the lowest EECs and represents the best mitigation option.



Model Application: Pyrethroids, California Historical vs. Current Best Practices

- Current pyrethroid labels (as of ~2010) limit applications on hard surfaces to crack and crevice applications.
- Bifenthrin EEC distributions show a reduction in annual

maximum EECs of ~10x after incorporating new label restrictions into the residential scenario.

 In this example, BMP effectiveness accounts for use site area application reduction only.

Summary and Conclusions

- An approach for modeling pesticide exposure in urban water bodies was developed for use in ecological risk assessments and in the evaluation of BMPs and exposure mitigation strategies.
- The watershed scale modeling approach was developed using field data from plot scale pesticide washoff simulations and stormwater monitoring data in California.
- The validated model has been used in evaluating new pyrethroid label requirements and has been tested in the assessment of alternative mitigation strategies.
- The SWMM-AGRO platform will allow efficient analysis of urban pesticide runoff mitigation strategies aimed at improving environmental stewardship.

Acknowledgements and References

- Acknowledgements:
 - Funding provided by the Pyrethroid Working Group
- References:
 - Davidson, P. C., R. L. Jones, C. M. Harbourt, P. Hendley, G. E. Goodwin, and B. A. Sliz. 2014. Major Transport Mechanisms of Pyrethroids in Residential Settings and Effects of Mitigation Measures. Environmental Toxicology and Chemistry 33:52-60.
 - Mackay, D. 2001. Multimedia Environmental Models: The Fugacity Approach Second Edition. Lewis Publishers, Boca Raton, pp.1-261.
 - Oki, L, and D. Haver. 2011. Evaluating Best Management Practices (BMPs) Effectiveness to Reduce Volumes of Runoff and Improve the Quality of Runoff from Urban Environments.
 - Padilla, L. E., and Winchell, M. F. 2014. Development And Testing Of An Improved Agro Model (AGRO-2014) For Use In Predicting Aquatic And Benthic Pesticide Concentrations In Ponds. PWG Report - PWG-ERA-03b. Stone Environmental Inc.