

Refined Application of the SWAT Model for Endangered Species Effects Determination

Michael Winchell¹, Solomon Folle², Roger Breton³

- 1. Stone Environmental Inc., Montpelier, Vermont
- 2. University of Minnesota, Twin Cities, Minnesota
- 3. Intrinsik Environmental Sciences Inc., Ottawa, Ontario

August 21st, 2012

Contents

- 1 Background
- 2 Input Datasets
- **3 SWAT Model Modifications**
- **4 Model Application and Results**

5 Summary and Conclusions

Background: Project Objectives and Approach

- Predict aquatic estimated environmental concentrations (EECs) of a commonly used insecticide in a highly vulnerable California Red-Legged Frog (CRLF) habitat.
- Use a model capable of predicting EECs in both flowing and non-flowing water bodies.
- Incorporate historical pesticide use data to probabilistically represent actual pesticide use patterns.
- Account for potential exposure from both runoff and spray drift sources.

Background: Motivation for Approach

- PRZM/EXAMS standard scenarios are designed to simulate pesticide EECs in static water bodies (ponds) draining a homogeneous field.
- Many aquatic habitats of interest are flowing water bodies (rivers, streams, ditches) draining a heterogeneous landscape

Background: Watershed Scale Modeling with SWAT

- Physically based, continuous simulation, management focused
- Land Pesticide Processes
 - Application, degradation, washoff
 - Runoff, interflow, leaching
- Water Body Pesticide Processes
 - Resuspension\settling
 - Degradation
 - Volatilization
 - Routing

Background: Vulnerable Watershed Identification

- Upstream pesticide use intensity was assessed for all flowing water bodies (NHDPlus) within the CRLF core areas.
- The Watsonville Slough (WVS), a watershed containing streams representing above the 99th percentile upstream use intensity, was selected.

Input Datasets: Subbasins and Weather

- The 20.3 mi² WVS watershed was delineated into 11 subbasins, including 2 major sloughs.
- Subbasins included intermittent and perennial streams, agricultural ditches, and the semi-stagnant sloughs.
- Two weather stations located within the watershed were used to represent the climate for a 31-year period from 1980 – 2010.

Input Datasets: Land Use Development

- The Cropland Data Layer (CDL) did not appropriately represent strawberry and lettuce, the major pesticide use crops in this watershed.
- The PUR and the CA Farmland Mapping and Monitoring Program (FMMP) datasets were used to represent agricultural land use.

Input Datasets: Composite Land Use

- The FMMP agricultural land was merged with the 2006 National Land Cover Dataset (NLCD).
- 2007 Ag Census and the PUR database were used to characterize the crop types.
- Land use in WVS
 - Agriculture: 30%
 - Developed: 30%
 - Forest: 15%
 - Grassland: 20%
 - Other: 5%.

Input Datasets: Soils

- The soil characteristics across the watershed were derived from the NRCS SSURGO database.
- A variety of runoff potential soils are found within the watershed, from lowest potential (hydro group A) to highest potential (hydro group D).
- The highest runoff potential soils (hydro group D) are most common.

Input Datasets: Pesticide Applications

- Ten years of the CA PUR (2000 2009) were evaluated to quantify pesticide application timing and amount within the watershed.
- The monthly total applied provided application probabilities by month.
- The yearly total applied provided a discrete probability distribution of total annual pesticide use.

SWAT Modifications: Simulation of Spray Drift

- SWAT was modified to account for pesticide spray drift. Assumptions:
 - All application areas within a subbasin impact the same water body.
 - Ground applications beyond 200 m from a water body don't contribute drift.
 - Wind direction is variable, so applications are not always upwind.
 - Vegetation between an application and water body can reduce drift inputs.
 - Deposition is a function of proximity using Intrinsik ground spray drift curve.

SWAT Modifications: **Spray Drift Inputs, Proximity**

- The proximity of SWAT HRUs (fields) to the nearest receiving water body was determined.
- The area of strawberry/lettuce within 200 m of a receiving water had the potential to contribute spray draft as a direct input.

SWAT Modifications: Spray Drift Inputs, Orientation

- The orientation (direction) of fields to the nearest water was determined.
- A wind direction of within +/- 90 degrees to the water body was assumed to contribute drift (conservative).

Model Application and Results: Flow Calibration

- Streamflow and pesticide concentration data were not available for the WVS.
- Streamflow data were available for an adjacent watershed (Corralitos Creek), where the hydrology was calibrated.
- Several key hydrologic parameter adjustments were transferred from the Corralitos watershed to the WVS.

Model Application and Results: Pesticide Application Simulation

- All applications are at maximum label rate for given crop.
- After a month is selected, the probability of an application on any given day in the month follows a uniform distribution.
- Multiple applications on same HRU (field) are made at the minimum interval, as allowed by total watershed mass and timing constraints.

Model Application and Results: Monte Carlo Simulations

- A single SWAT simulation for 30 years will result in 30 annual peak EECs (varying due to weather conditions).
- Variable inputs to WVS SWAT model in include:
 - Amount of pesticide applied in a given year (from PUR)
 - Pesticide application timing (from PUR)
 - Which fields receive pesticide applications (randomized)
 - Whether spray drift will impact a water body (based on wind statistics)
 - Hydrologic characteristics of the sloughs
- SWAT was run 500 times, altering these inputs for each simulation (a "Monte Carlo" simulation), resulting in 15,000 annual peak EECs in each water body.

Model Application and Results: **SWAT Simulation Results**

- SWAT Monte Carlo simulations provided a distribution of EECs for each water body for 1-day to 60-day exposure durations.
- EECs for Reach 3 (a tributary to the slough) show greater variability than for the slough.

Model Application and Results: PRZM/EXAMS Comparison with SWAT

- The EECs predicted from PRZM/EXAMS based on local weather and refined e-fate characteristics were compared with EECs predicted by the SWAT model for the WVS water bodies.
- This comparison shows that PRZM/EXAMS EECs were between 12 and 50 times higher than the SWAT EECs for the most vulnerable water body in the WVS (water body with the maximum EEC).

	SWAT (10 WVS Water Bodies)			PRZM/EXAMS	
90th %-ile EEC Duration	Minimum	Median	Maximum	EEC for Strawberry	PRZM/SWAT Ratio
Peak	0.03	0.60	2.92	36.32	12
21-day	0.00	0.07	0.25	12.18	50

Summary and Conclusions

- A watershed modeling approach using SWAT was applied to predict pesticide EECs throughout the Watsonville Slough, a highly vulnerable watershed overlapping the CRLF core and critical habitat areas.
- SWAT was modified to allow chemical contributions from spray drift to directly impact water bodies within the watershed.
- The applications of pesticide within the watershed were parameterized based on 10 years of historical use data from the CA PUR database.
- Distributions of predicted EECs throughout the watershed were based on a Monte Carlo simulation that varied pesticide application, wind, and hydrologic assumptions.
- Plans for future refinement of this approach include a more spatially explicit handling of spray drift inputs through a more discretized representation of agricultural fields.

THANK YOU

