A Comparison of Residential Pyrethroid Exposure Predictions Based on EPA Tier 2 Standard Scenarios and SWMM/AGRO Scenarios Based on Residential Use Survey Data

Michael Winchell¹, Scott Jackson²

- 1. Stone Environmental, Inc.
- 2. BASF Corporation

ACS National Meeting, Boston, MA, August 19th, 2015

Presented by Michael Winchell on Behalf of Pyrethroid Working Group member companies: AMVAC, BASF, Bayer, DuPont, FMC, Syngenta, Valent

Background

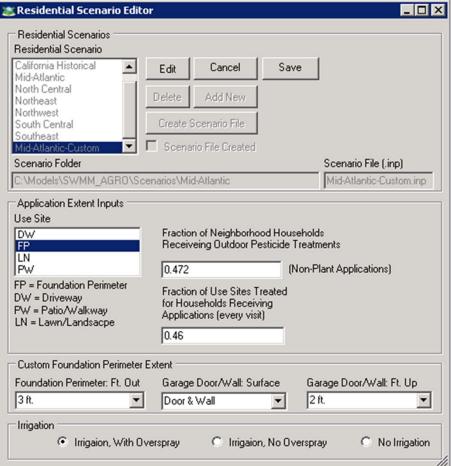
- Estimation of pesticide concentrations in urban and residential water bodies is necessary for some ecological risk assessments
- The US EPA has developed PRZM/EXAMS and SWCC screening level scenarios to predict potential exposure from non-agricultural uses of pesticides
- The Pyrethroid Working Group (PWG) has developed a residential exposure modeling approach and scenarios that uses the SWMM-AGRO model parameterized based on residential pesticide use survey data
- With equivalent parameterizations, predictions from the PRZM and the SWMM modeling approaches may be similar

Outline

- Tools for residential exposure modeling
- Conceptual models for EPA and PWG methods
- Comparison of predicted residential pesticide loads with monitoring data
- Implications for simulation of residential EECs for ecological risk assessment

Tools for Residential Aquatic Exposure Modeling: PRZM/EXAMS and SWCC

- Developed by US EPA, originally for agricultural use assessments
- Includes 2 standard residential lawn and residential impervious scenarios
 (Barton Springs Salamander (BSS) and California Red-Legged Frog (CRLF))
- Requires that independent simulations for lawn and impervious scenarios be combined at appropriate proportions in a postprocessing step

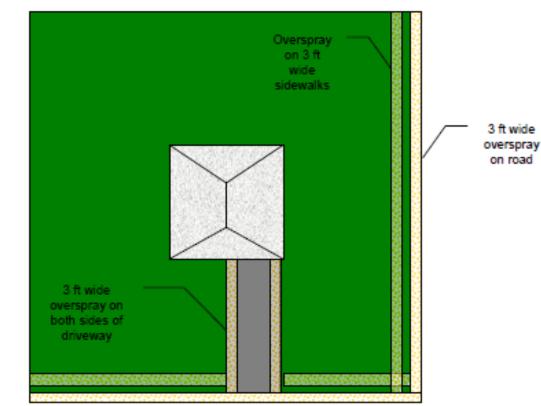

v Mont	escriptor	s e	25 100 7.6 0.15	Root De Canopy Canopy	3234.dvf epth (cm) Cover (%) Height (cm	1/.5 Evaporation Depth (cm)	
Surf C Ren C Left Soil Laye	of Horizo	ied ge	000	None Over (Under ate Horiz	Canopy Canopy	Extra Water Allowed Max Rate Fraction Depletion (cm/hr) 0.1 0.5 0.1	
(cm)) (g/cm ³)) Cap.	Cap.	OC (%	5) N 20		
10	1.5	0.309	0.167	1.74	2		
54	1.5	0.309	0.167	1.74	18		
86	1.45	0.372	0.289	0.15	43		
30	1.43	0.309	0.175	0.15	6		

Tools for Residential Aquatic Exposure Modeling: SWMM/AGRO

- Developed by the Pyrethroid Working Group (PWG)
- Couples US EPA's SWMM model with the Canadian Center for Environmental Modeling (CEMC)
 AGRO model (Mackay, 2001;

Padilla and Winchell, 2014)

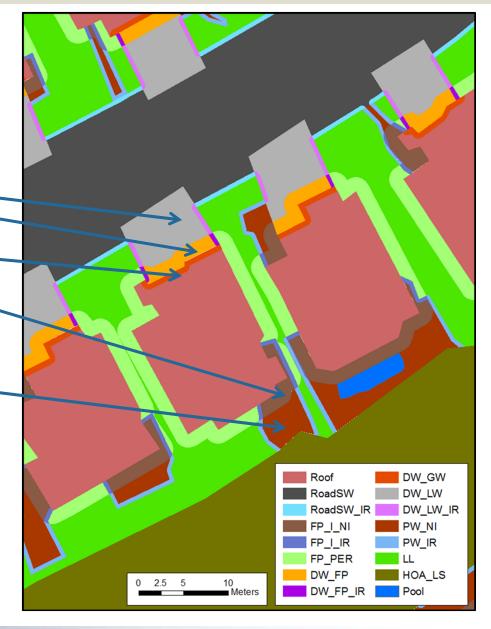
- Simulates multiple types of use sites simultaneously in a single simulation (e.g. perimeter, driveway, lawn, patio/walkway)
- Includes scenarios for 7 different regions with use data from a recent regional survey (Winchell, 2013)


Conceptual Model for PRZM/EXAMS Residential Scenarios, Watershed

- A 10 ha. watershed consisting of 58 ¼ acre lots
- o 50% of the watershed is pervious (lawn)
- 50% of the watershed is impervious (roofs, driveways etc.)
- All areas drain directly to a 1 ha, 2 m. deep pond

Conceptual Model for PRZM/EXAMS Residential Scenarios, House Lot

- Direct applications to the pervious (lawn) portion of the lot result in off-target application to adjacent impervious surfaces
- Off-target impervious surfaces include:
 - Driveway edge
 - Sidewalk
 - Road edge
 - 5.68% of total impervious area
- Corner lots have different pervious/ impervious fractions than mid-block lots


Conceptual Model for SWMM/AGRO Residential Scenarios, Watershed

- Aliso Viejo, Orange County, CA
- Part of CA DPR / UC Riverside monitoring program (Oki and Haver, 2011)
- Drainage area: 27.2 ha (67.2 acres)
 - 307 homes
 - Dwelling unit density: 4.6 units/acre
- Drains to same 1 ha., 2 m. deep pond

Conceptual Model for SWMM/AGRO Residential Scenarios, House Lot

- Aliso Viejo neighborhood was spatially delineated
- Particular attention to impervious use sites
 - Lower driveway
 - Upper driveway (within 5 ft) -
 - Garage door
 - Impervious within 5-ft foundation perimeter
 - Patios/walkways away from building
- Impervious areas near lawns (1.5 ft) receive irrigation
- A fraction of impervious surfaces (other than driveway) flow into adjacent lawns

Conceptual Model for SWMM/AGRO: Residential Use Data

- Pyrethroid use characteristics for California were derived primarily from a 2009 survey of urban pesticide use (PWG, 2010) with additional support from an earlier survey (Wilen, 2001)
- Bifenthrin was selected for the initial assessment
- Key assumptions include:
 - 75.9% of households use outdoor insecticides
 - Some households are treated every 6 weeks, and some every 12 weeks
 - Fraction of use sites treated with bifenthrin (of households using insecticides) at these intervals was estimated from survey data and were set as follows:

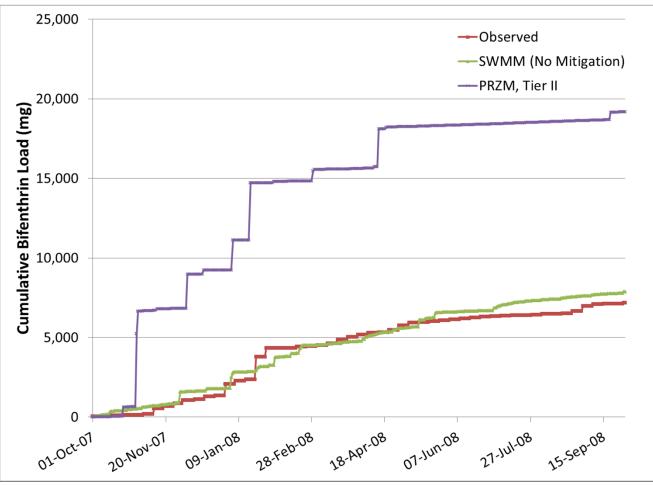
Use Site	Estimated Total Percent Treated (%)	Estimated Percent Treated Every 6 Weeks (%)	Estimated Percent Treated Every 12 Weeks (%)
Foundation Perimeter	25.7	13.1	12.6
Patios/Walkways	24.9	12.7	12.2
Driveways	24.1	10.6	13.5
Lawns	24.4	5.4	18.9

Conceptual Model for SWMM/AGRO: Residential Use Data, Cont.

- The fraction of each use site surface area treated was assumed to be the following (estimated from survey data):
 - Foundation Perimeter: 100%
 - Patios/Walkways (away from foundation perimeter): 10%
 - Driveways (away from foundation perimeter): 10%
 - Lawns/Landscape areas (house lot): 100%
- Application rate was set at the maximum label rate (rate information was not collected in surveys).
- Target application dates were set at the following:

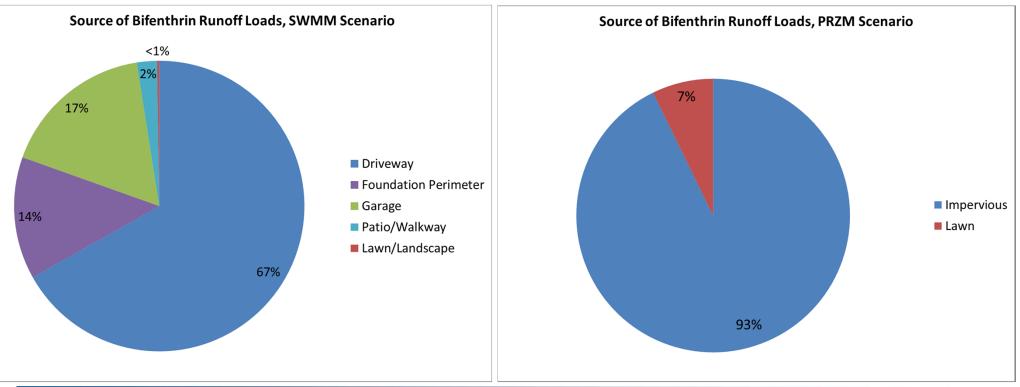
Cycle	App1	App2	Арр3	App4	App5	App6	App7	App8
6-week	01/01	02/15	04/01	05/15	07/01	08/15	10/01	11/15
12-week	01/01	04/01	07/01	10/01				

Comparison of Load Predictions: Scenario Background


 Bifenthrin applications 8 times per year (4 at half rate to account for 50% of homes with less frequent use)

• PRZM/EXAMS scenario

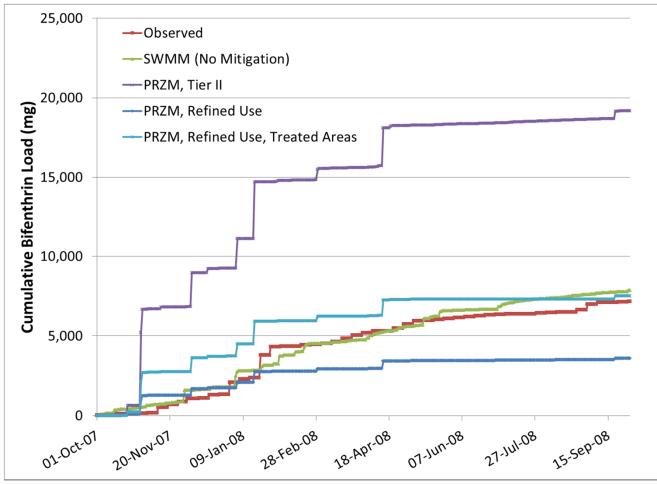
- California residential (CAresidentialRLF) 50% of area
- California impervious (CAImperviousRLF) 50% of area
- Weather station: Irvine CA, from SWMM model CA scenario
- Application to lawn with overspray to impervious
- 5.68% of impervious area receives application, modeled as reduced application rate over impervious fraction
- Assume entire neighborhood is treated
- SWMM/AGRO scenario
 - CA historical scenario (application practices pre-label mitigation)
 - Applications are made to multiple use sites directly (lawn, perimeter, driveway, patio/walkway)
 - Percent Treated Area (PTA) based on use survey data


Comparison of Load Predictions: Cumulative Loads

- SWMM Bifenthrin load in runoff closely follows observations
- Load from PRZM scenario is 2.7x times higher than observations and occurs in larger pulses

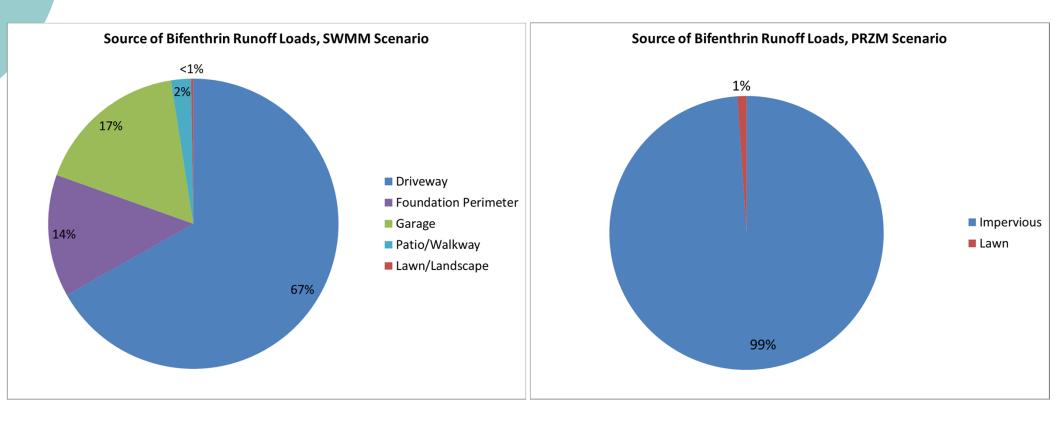
Comparison of Load Predictions: Load Distribution Comparison

- Over the 30-yr simulation, total load is dominated by impervious sources (93% PRZM, 99% SWMM)
- SWMM scenario allows a more specific breakdown of sources
 - Driveway dominates, with 67% of total
 - Garage and foundation perimeter (impervious portions) account for 31%
 - Breakdown consistent with PWG Pathway ID field study findings

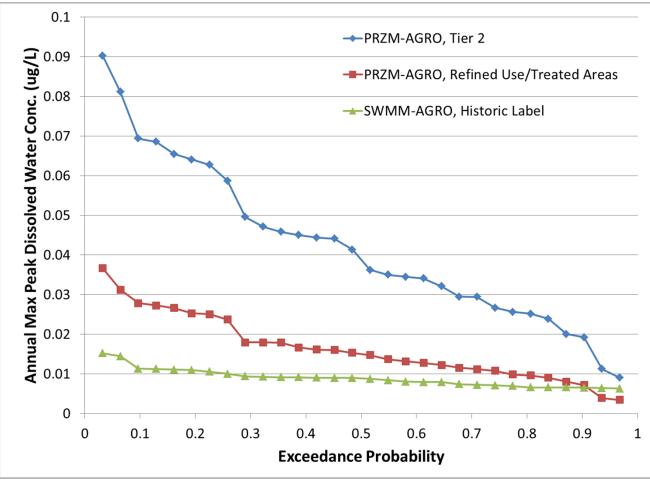


Comparison of Load Predictions: PRZM Scenario Refinement

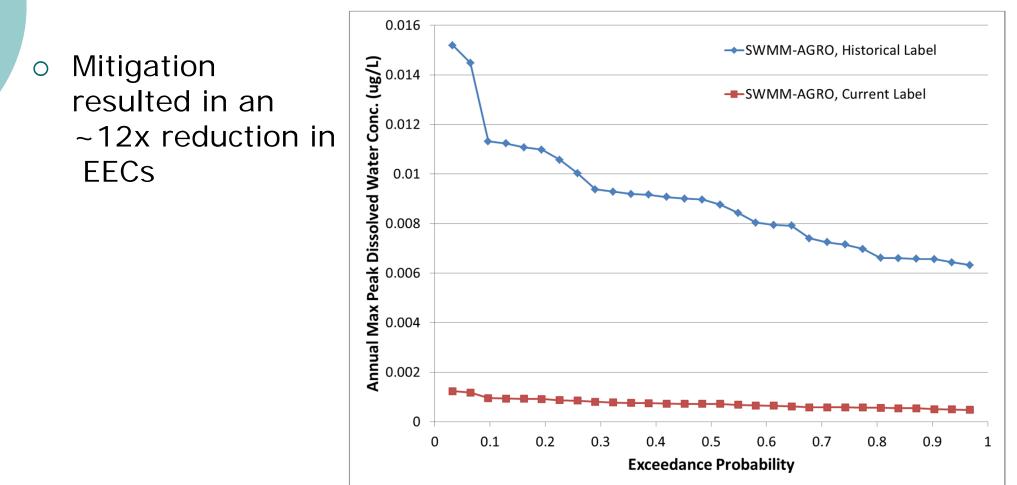
- Use Refinement: Adjust the fraction of the neighborhood treated based on the use survey data used to develop SWMM parameterization
 - Percent of neighborhood with outdoor insecticide use: 75.9%
 - Market share of bifenthrin: ~25%
 - Percent of neighborhood households treated with bifenthrin: 19%
- Use Refinement & Treated Area Refinement: Add adjustment to the fraction of impervious and pervious (turf) areas treated based on the use survey data and the SWMM conceptual model
 - Watershed fraction of pervious area use sites (lawn): 31%
 - Total faction of pervious area treated: 5.8%
 - Watershed fraction of impervious area use sites: 12%
 - Total fraction of impervious area treated: 2.3%
 - Residential and impervious fractions remained at 50%/50%


Comparison of Load Predictions: Cumulative Loads, Refined PRZM

- PRZM use only refinement results in lower loads than SWMM
- PRZM with use and treated area refinement results in nearly the same total bifenthrin load as the SWMM scenario


Comparison of Load Predictions: Load Distribution Comparison

 The PRZM scenario with the use refinement & treated area refinement results in an impervious load fraction closer to the SWMM scenario


Implications for Simulation of Residential EECs: Historical Practices

- 30-year PRZM-AGRO and SWMM-AGRO simulations were run based on Tier 2 and refined input assumptions
- Peak EECs for the refined PRZM-AGRO scenario were ~2.5x higher than the SWMM-AGRO scenario at the 90th percentile
- Tier 2 PRZM-AGRO EECs were highest due to very conservative use assumptions

Implications for Simulation of Residential EECs: Label Mitigation

 Current pyrethroid labels (as of ~2010) limit applications on hard surfaces to crack and crevice applications, and reduce the portion of the garage door that can be treated

Summary and Conclusions

- The differences in the predictions of aquatic EECs between a PRZM-based approach and a SWMM-based approach are partly attributable to the parameterization of pesticide use
- When similar pesticide use assumptions were made, total pesticide loads were within 10%, and annual maximum EECs were within a factor of 2.5x
- Both modeling approaches predicted that the vast majority (99%) of pesticide residues in urban runoff from a CA scenario originate from impervious surfaces
- The SWMM conceptual model allows for a more refined diagnosis of pesticide runoff sources and provides flexible options for parameterizing label mitigations

Acknowledgements and References

- Acknowledgements:
 - Funding provided by the Pyrethroid Working Group

• References:

- Mackay, D. 2001. Multimedia Environmental Models: The Fugacity Approach -Second Edition. Lewis Publishers, Boca Raton, pp.1-261.
- Oki, L., and D. Haver. (2011). Evaluating Best Management Practices (BMPs) Effectiveness to Reduce Volumes of Runoff and Improve the Quality of Runoff from Urban Environments. Agreement Number 04-231-550-03. March 8, 2011.
- Padilla, L. E., and Winchell, M. F. 2014. Development And Testing Of An Improved Agro Model (AGRO-2014) For Use In Predicting Aquatic And Benthic Pesticide Concentrations In Ponds. PWG Report - PWG-ERA-03b. Stone Environmental Inc.
- PWG (Pyrethroid Working Group). (2010). California 2009 Urban Pesticide Use Pattern Study. US EPA MRID Number 48762913.
- Wilen, C.A. (2001). Survey of Residential Pesticide Use and Sales in San Diego Creek Watershed of Orange County, California. University of California Cooperative Extension. 101 pp
- Winchell, M. Pyrethroid Use Characteristics in Geographically Diverse Regions of the United States: Parameterization of Estimated Pyrethroid Treatment Extent and Frequency for Urban Exposure Modeling. PWG-ERA-02b.